Định lý Ptoleme là gì? Cách chứng minh định lý Ptoleme chi tiết nhất 2023

Định lý Ptoleme là gì?

220px Ptolemy Theorem.svg

Định lý Ptôlêmê về mối liên hệ giữa độ dài các cạnh trong một tứ giác nội tiếp.

Định lý Ptoleme hay đẳng thức Ptoleme là một đẳng thức trong hình học Euclid miêu tả quan hệ giữa độ dài bốn cạnh và hai đường chéo của một tứ giác nội tiếp. Định lý này mang tên nhà toán học và thiên văn học người Hy Lạp cổ đại Ptolemy (tức Claudius Ptolemaeus).

Nếu ABC, và D là 4 đỉnh của tứ giác nội tiếp đường tròn thì:

với dấu gạch ngang ký hiệu độ dài của các cạnh.

Định lý này cũng có thể phát biểu thành định lý thuận và đảo:

THUẬN:NẾU MỘT TỨ GIÁC NỘI TIẾP TRONG MỘT ĐƯỜNG TRÒN THÌ TÍCH CỦA HAI ĐƯỜNG CHÉO BẰNG TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN
ĐẢO:NẾU MỘT TỨ GIÁC THỎA MÃN ĐIỀU KIỆN TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN BẰNG TÍCH CỦA HAI ĐƯỜNG CHÉO THÌ TỨ GIÁC ĐÓ NỘI TIẾP MỘT ĐƯỜNG TRÒN.

với dấu gạch ngang ký hiệu độ dài của các cạnh.

Định lý này cũng có thể phát biểu thành định lý thuận và đảo:

THUẬN:NẾU MỘT TỨ GIÁC NỘI TIẾP TRONG MỘT ĐƯỜNG TRÒN THÌ TÍCH CỦA HAI ĐƯỜNG CHÉO BẰNG TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN
ĐẢO:NẾU MỘT TỨ GIÁC THỎA MÃN ĐIỀU KIỆN TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN BẰNG TÍCH CỦA HAI ĐƯỜNG CHÉO THÌ TỨ GIÁC ĐÓ NỘI TIẾP MỘT ĐƯỜNG TRÒN.

Chứng minh Định lý Ptoleme

  1. Gọi ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD đồng dạng với △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)

Bất đẳng thức Ptoleme

Bất đẳng thức Ptoleme là trường hợp tổng quát của định lý Ptoleme đối với một tứ giác bất kỳ. Nếu AB CD là tứ giác bất kỳ thì

��¯⋅��¯+��¯⋅��¯≥��¯⋅��¯

Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptolemye.

Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.

Dựng điểm  sao cho △��� đồng dạng với △���. Khi đó, theo tính chất của tam giác đồng dạng, ta có

����=����

Suy ra

��.��=��.��(1)

Mặt khác, △��� và △��� cũng đồng dạng do có

����=���� VÀ ���^=���^

Từ đó

����=����

Suy ra

��.��=��.��(2)

Cộng (1) và (2) ta suy ra

��⋅��+��⋅��=��⋅(��+��)

Áp dụng bất đẳng thức tam giác ta suy ra ��⋅��+��⋅��≥��⋅��

Nguồn: định lí ptoleme

Related Posts

Các cách Chuyển Tiền Đi Trung Quốc uy tín hiện nay

ngày nay nhu cầu chuyển tiền sang Trung Quốc để trả tiền giá tiền tậu hàng, phí vận chuyển hàng hóa hay chuyển tiền cho người thân,…

Các Cách Chuyển Tiền Đi Mỹ Giá Rẻ uy tín hiện nay

Nhu cầu định cư Mỹ vẫn đang rất phổ thông ngày nay, việc chuyển tiền sang Mỹ là nhu cầu đang được phổ quát nhà đầu cơ để ý….

Hình thức chuyển tiền đi tây ban nha Tốt nhất hiện nay 2023 | Chuyentienuytin.vn

sở hữu không ít người với nhu cầu chuyển tiền trong khoảng Việt Nam sang Tây Ban Nha cho con du học, thanh toán đối tác kinh doanh, định…

Cách Chuyển Tiền Từ Việt Nam Qua Canada Bằng Cách Gì | Chuyentienuytin.vn

Bạn đã biết bí quyết chuyển tiền từ Việt nam sang Canada chưa? Đối sở hữu các ai có người nhà bên Canada thì đây là một…

Chuyển Tiền Đi Singapore Theo Phương Thức Nào | Chuyentienuytin.vn

có gần như các bạn có nhu cầu chuyển tiền từ Việt Nam sang Singapore do với con em đang học tập và cần lao tại nước…

Hướng dẫn cụ thể Chuyển Tiền Từ Việt Nam Sang Philippines | Chuyentienuytin.vn

ngày nay đang sở hữu gần như muốn chuyển tiền sang Philipines có các mục đích khác nhau. ví dụ như để cho con dòng học tập,…